Welcome

Welcome. I am the author of Universal Time, a sci-fi urban comedy;
Beaufort 1849, an historical novel set in antebellum South Carolina;
and In the Land of Porcelain, an urban comedy set in present-day San Francisco.

Thursday, March 31, 2016

An Energy Diet for a Healthy Planet--Part I

Part I: Envisioning 100 Kilowatt-hours/Person/Day

Biodiverse farm of the future (Singing Frogs Farm)
Nearly every human being on the planet consumes energy beyond the amount they derive from food, some more than others. In 2014, Americans, on average, consumed a total of 230 kilowatt-hours of energy per person per day. (See note at bottom for data sources and types of energy this includes.)

Is 230 kwh/person/day a lot or a little? How do we compare to other countries? As you can see, we use nearly double the amount of per capita energy as Germany and France, and nearly 2 ½ times the energy per capita of the UK. How can this be? Those of us who have visited Germany, France and the UK can testify that they have cold winters, warm summers, and that their citizens seem to enjoy a high standard of living. For comparison, I’ve included a few of the most energy-sipping US states.

Let’s compare the US to some other countries. Ones that have snow. These countries on most measures offer their citizens a higher standard of living while using 3/4ths to 1/2 the energy per person that we use. I've compared them to our most energy efficient snowy-land states. Rhode Island manages to beat Sweden, anyway.


Here we compare the US to key Asian countries (plus Australia).







And here are the big kahuna per capita energy gluttons of the world. Though the US might not tower over these guzzlers, we still hold our own. I've include some of our domestic guzzling states for comparison, all home to energy-intensive oil drilling, oil refining, or coal mining. (Texas would be on this chart if not for its huge population.) 

A number of other states, while not energy sumo wrestles, are still obese when it comes to kwh/person/day and some outdo even Kuwait, as you can see in the chart below.


It’s interesting to note that even countries that are highly energy efficient have room to improve because they all still use substantial fossil fuels for transportation and/or space heating. While electricity at present provides only 16% of US total energy consumption, even the most electrified countries in the world don’t break 30%. The reason electrification is important is that in terms of wringing the most benefit from every kilowatt-hour expended, electricity is the way to go. Electric motors turn 60% of the energy fed to them into power at the wheels whereas gasoline engines convert only 20%. (Diesel motors convert 35 – 40%.) An air source heat pump is three times as efficient as the most efficient natural gas furnace; a ground source heat pump is six times as efficient. A heat pump hot water heater is generally four times as efficient as a gas one. And a desuperheater connected to a ground source heat pump will turn waste heat into hot water all summer with almost no additional energy at all.

In the US, our current energy per person/day energy budget is this: 
51 kwh residential, 44 kwh commercial, 73 kwh industrial and 62 kwh transportation.   (This includes losses incurred in thermal generation of electricity. More on this in Part II.)
To get to 100 kwh/person/day, we’ll need the split to be more like this:
23 kwh residential, 20 kwh commercial, 35 kwh industrial and 22 kwh transportation. 

Right now 30 out of 51 kwh/person/day of residential energy is used towards space and water heating. With a combination of heat pumps, better sealing and insulation, solar hot water, energy exchange ventilators, and ceiling fans, we can drop total residential energy down to 26 kwh/person/day. Put in all LED lightbulbs and efficient appliances (and a few other items I'll mention in Part II) and we can drop it down to 21 kwh/person/day, below our future energy budget.  

For transportation, less than 1 kwh/person/day comes from electricity, making it a key area in need of change. As you can see below electric forms of transportation are substantially more energy efficient than those powered by internal combustion engines.  

Type of Transport

KWH to go 100 miles
(For transit, per 100
passenger miles)
Gasoline car (22 mpg)
155
International air travel
99
Domestic air travel
69
Gasoline motorcycle
68
Gasoline car (50 mpg)
67
Amtrak (current load)
47
Transit bus (diesel)
36
Electric car (Leaf)
34
US light rail (mostly electric)
31
US heavy rail (mostly electric)
31
US commuter Rail (mixed)
26
Amtrak (ideal 80% load)
24
Gasoline scooter
18
Calif. High Speed Rail (projected)
16.4
Electric motorcycle
12
French High Speed Rail
7 - 8
Electric Scooter
7.5
5.3
Around town walking
5.2
Japanese HS Rail
4.2
Siemens electric train
4.2
Around town biking
2.8
Electric Biking
2

Note: Around town bicycling and walking kwh/mile rates are calculated based on calories burned above baseline human metabolism (45 additional calories/mile walking and 32 additional calories per mile biking.) Transit, train and air travel calculated with 80% passenger load. Electric bike rate includes relaxed pedaling. Amtrak is a combination of diesel trains and all-electric.

Has a 180 mile range between charges
On average Americans travel 13,183 miles per person in a year. By private car (with average MPG and average occupancy) this amount of travel works out to 37 kwh/day. Way over the transport budget. If we drop travel miles by a fourth to 9900 miles/year (by a larger portion of us telecommuting and by most of us living closer to work, goods and services), that gets us to 27 kwh/person/day. This is still over the transport budget, and it doesn't include freight miles traveled. But if 2000 of those miles were by high speed rail, 3000 by transit, 2000 by air, 1900 by electric car (or rideshare) and 1000 by walking and biking, that squeezes down to 9 kwh/person/day.

Seriously efficient
Now let's look at freight. For each person in the US, 55 tons of domestic freight are moved an average of 325 mi. By diesel truck that comes to 58 kwh/day (and that doesn't include ocean shipping if it's an import.) Say we could cut this in half by buying local, by not buying stuff we don't need, by drinking filtered tap water instead of bottled water or soda, and by ending coal and oil shipments. That puts us at 29 kwh/day, still way above the travel budget. However, if we use diesel electric trains, each person's freight movement only comes to 2.5 kwh/day. If we use electric trains it gets down to .75-1.5 kwh/day, leaving a lot more room in the energy budget for passenger travel. No doubt with trains we'd have to add on a couple kwhs for the last 1 - 20 miles of delivery by electric truck, and international freight and water transport have to folded in here somehow, but all of the sudden 20 kwh/person/day for total transportation looks a lot more manageable.

Freight transport
KWH per ton per mile
18-wheeler truck
1.19
Cargo ship
.16
Diesel-electric rail
.10
Electric rail
.03--.06

As far as industry goes, Part II goes into this further, but for now I'll just point out that oil refining in the US uses 15 kwh/person/day. Get transportation off oil, and industrial energy use instantly drops from 73 to 58 kwh/person/day from refining alone.

Add in horses: 50% of energy (1850); 10% (1900)
Still, wouldn't a 100 kwh/person/day energy diet be like going back to the Stone Age? Well, up to 1900, Americans lived on less than that. (Note: chart at right is in BTUs, not kwhs.) Aside from horsepower, most nineteenth century energy came from wood and coal, much of which they burned to power wildly  inefficient steam engines and to heat drafty, poorly insulated houses. Today, all of South America, Africa and most of Asia manage to exist with less than 100 kwh/person/day, admittedly with a lower standard of living for the average person. (India survives on just 16 kwh/person/day!) But there are quite a few countries that achieve this energy diet with a comparable standard of living to the present day United States, including Italy (78), Ireland (93), Spain (90), and the United Kingdom (94). And then there’s Denmark with a higher standard of living than the US while using only 98 kwh/person/day. (Denmark, not resting on its laurels, has plans to drop to 95 kwh/person/day by 2020.)

Why should we care about a 100 kwh/person/day energy diet? We should care deeply because if we want to avoid climate catastrophe, we need to stop spewing carbon and methane into the atmosphere. Now it's true that 56 kwh out of the 230 we slurp up are completely wasted as unused heat in electricity generation, so if we  switched to all renewables and hydro, we'd only need to build out 174 kwh/person/day. Still, it’s much, much easier to produce 100 kwh/person/day of carbon-free energy than it is 174. Climate change is accelerating faster than anticipated. If we let the permafrost in the Arctic melt, the methane released will produce a self-reinforcing methane timebomb that cannot be reversed. The result will be a planet largely uninhabitable by humans. (On the plus side, pine beetles, mosquitos, zebrafish, snakes, yellow-bellied marmots, and jellyfish will likely do quite well. So, hey, it could be worse.)

If we insist on slurping up energy at current levels, even with extraordinary measures it might take us fifty years to stop spewing emissions, and that will be too late to prevent permafrost detonation. But if we can get by comfortably with 100 kwh/person/day, that’s a much easier target to meet, one we can probably achieve in 20 years. Not only is this a target we can achieve faster, it’s a target we can achieve more cheaply. That’s because energy efficiency is absolutely the most economical form of energy production available to us.
(Click for larger image)

While the cost of solar and wind will no doubt drop even more over time, in 2015 the US produced only 5 kwh/person/day of electricity from renewables (including rooftop solar) + hydro. Which means to get carbon-free we have a long ways to go. Even if we start building out solar PV and wind at 20 times the rate of 2012 (our best year ever), we won't be able to produce enough carbon-free energy fast enough to prevent catastrophe. But if we combine a rapid build out of renewables with a rapid lowering of demand through common sense behaviors and technology that already exists, we have a fighting chance. Find out how to do this and more in Part II!

Note: Most data in this post is from the 2015 BP Statistical Review of World Energy, probably the best compendium of world energy available, and from the US Energy Information Agency, the best source for state-level data. The per person per day energy figures include all large-scale sources of energy such as oil, natural gas, coal, nuclear power, hydro and renewables, their equivalent energy content turned into kilowatt-hours. They do not include rooftop PV or wood for heating or cooking, or energy expended to walk or bike for transportation. They do include all uses—residential, commercial, industrial, and transportation. Because our future will be mostly all electric, I’ve used kilowatt-hours as the energy unit of choice, better, in my opinion, than Tons of Oil Equivalent or BTU’s, although I acknowledge there’s a good case to be made for joules.


Friday, March 4, 2016

Efficiency Is Not the Enemy of Resiliency


"I ain't so tough."

I'm an odd duck. When I was in college, I started on a coterminal master’s in industrial engineering even as I was finishing up my undergrad degree in English. This meant I would go from Fiction Writing one hour to Circuits the next, a true ambi-cerebrum experience. After nearly a decade working in industry, I decided it wasn’t my cup of tea and reverted to my fonder love, writing. But my education and training left me with affection for efficiency, a fondness that to this day causes my heart to swell indignantly every time I see it maligned.
Hemispherical cross-training

On a simplistic level, efficiency is maximum (or optimal) output with minimum waste. The output could be a product from a manufacturing line; it could be a warm house; it could be nutritious food to eat. Efficiency is not the opposite of resiliency. It does not equate with fragility. It does not, in and of itself, impede a system’s ability to cope with difficult conditions. In fact, it can vigorously improve that ability.

I think efficiency gets its bum rap because it sometimes involves eliminating wasteful redundancy. Poorly performed, without due consideration of externalities and risks, eliminating redundancy can indeed increase fragility. Efficiency is also closely linked in many people’s minds with just-in-time supply chains that have been deservedly criticized for being fragile and vulnerable. Let’s examine just-in-time first.

My former life
In the 1980’s, I worked as a manufacturing engineer for Procter and Gamble while the company was in the process of implementing just-in-time into its operations. I managed teams that made and packed toothpaste. My days were noisy and minty. During those years just-in-time was explicitly adopted to reduce working capital tied up in raw materials and finished product. It was never, ever about efficiency, except perhaps efficiency of money. In fact, the short production runs just-in-time demanded lowered the efficiency of manufacturing because every changeover was costly in terms of set up time, product losses and machine reliability. In response, we engineers scrambled to reduce these costs, muttering under our breath the whole time.

Theoretical perfection
However much just-in-time requires efficiency--in logistics, manufacturing, and shipping--it is not inherently efficient in and of itself. This is not to say there are no efficiency benefits to just-in-time. The longer finished goods hang out in a warehouse, the more they get beat up and eventually must be scrapped. Just-in-time keeps product from lingering long anywhere in the supply chain. For a product that has a defined shelf life (such as toothpaste) just-in-time reduces the likelihood a tube will expire before it gets to the consumer. And smaller batch sizes mean quality problems get identified and addressed earlier, resulting in less waste yet again.

Don't blame efficiency
The fragility of just-in-time lies precisely in what it tries to create—minimal inventory. If anything breaks down—pretty much anything at all—the whole supply chain, from raw materials to product on store shelves, seizes up within days. (Let me point out that when this happens, efficiency is thrown to the wind.) So it’s a fine line companies walk with just-in-time, a balancing act heavily dependent on trucks powered by diesel to transport minimal quantities of raw materials and finished product at precise intervals. Understandably, this lack of slack in the system is what worries resiliency advocates. So far, since trucking has been reliable, it’s worked. Just remember that efficiency is not the driver here, just a hired hand doing what it’s told.

Efficient redundancy
Now let’s look at redundancy. Efficiency, it’s claimed, creates fragility by cutting out the superfluous. On some level, this is true. No point duplicating functions and equipment if they’re not needed. The trouble comes when efficiency cuts slack to the point that a system can’t bounce back from trouble. I would contend that this occurs primarily when both the likelihood and cost of failure have been underestimated. An efficient system is not one that only works in the best case scenario but in most, if not all, scenarios. If the cost of failure is extremely high—say an airplane falling out of the sky—then an efficient system is one with enough back ups and redundancies to never fail because that is the optimal outcome. If occasional failure is okay, then fewer back ups and redundancies are needed. However, if we continually underestimate the likelihood of failure and failure’s cost, we will design efficient but brittle systems that fail far more often than we expect or want. This isn’t due to efficiency per se, it’s due to recklessness. On a personal level, if the cost of failure is a cold house, questionable water, or hungry bellies, it would no doubt behoove us all to have more than one way to heat our homes, have access to an emergency water supply, stock back up food stores, etc.

Typical
Waste is not resilient. Worse, much of the waste in the US goes beyond inefficiency to wanton carelessness and downright stupidity. A full third of the food in the US that is grown, processed and transported will never be consumed. Most of this food not only goes on to create methane in landfills, it represents a huge amount of embedded energy used up for nothing. Leaking pipes in the US that lose an estimated seven billion gallons of drinking water a day are not resilient. Sprinklers that water streets and sidewalks are not resilient. Office buildings so cold that people run space heaters under their desks are not resilient, nor are apartments that are so hot that windows must be kept open in January. Vampire devices that suck energy 24/7 even when they're only used a few hours a day are not resilient, they are badly designed. Twenty-year-old refrigerators in the garage that do nothing but chill beer and soda pop are not resilient. Driving 5000lbs of steel half a mile to buy a loaf of bread is not resilient. And the list goes on. 

Just because the US doesn’t indulge in refrigerated beaches and indoor ski slopes like the United Arab Emirates doesn't mean we don’t squander resources wildly.
Insanity in the desert
This becomes clearer when we compare ourselves to Switzerland, a country that consumes half the energy per person of the US while enjoying a higher standard of living on almost every conceivable measure. This is not because their population is more homogeneous (26% of the Swiss population is foreign born compared to 13% in the US) or because the Swiss are more urbanized (26% of Swiss live in rural areas compared to 15% in the US.) 

Swiss efficiency
It’s true that Switzerland has fewer energy-intensive industries, so industry there uses only 20% of their total energy compared to 31% in the US. But it’s also true that lacking an indigenous supply of fossil fuels, the Swiss have spent decades becoming extremely energy-efficient, from highly sealed and insulated buildings to electrified transit to retrofitting with heat pumps. They encourage active transportation to the point that in Zurich, their largest city, 42% of all trips are now made by biking or walking. Another huge difference is that the Swiss tax gasoline at $2.99 per gallon. (Remarkably, this is one of the lowest rates in western Europe.) As a result, the Swiss use one-fourth the fossil fuels per person compared to the US. And they could use less! 60% of their space and water heating still comes from heating oil or natural gas. They have a lot of hydroelectricity but little in the way of other renewables. With solar PV and more heat pumps, they could cut their fossil fuel use in half yet again.

Toss, toss, toss
Waste does not make prosperity; it does not create resilience. Sometimes waste is a proud announcement of wealth. After all, only the truly wealthy can destroy for naught what others need just to live. I’ll point out that while I worked in industry, I was never once asked to minimize carbon emissions or energy use. Neither were considered important variables to optimize in the production equation. If they had been, our team of engineers would’ve jumped all over them. That’s what engineers do, they optimize. But they only optimize the variables they’re told to, because if they argue too much, they’re not a team player and their next performance review doesn’t go well.

Less work
Rest assured, efficiency can create resiliency. A well-sealed and insulated house is far easier to heat and cool whatever the fuel source. (Passive houses can be heated by body and appliance heat alone.) LEDs cost much less than other bulbs per hour of use and last for decades. Bicycles are the most efficient form of transport ever devised. Water-efficient appliances not only use less fresh water, they reduce the load on your community’s sewage system. High-efficiency woodstoves require half the cutting and stacking of wood as conventional ones and put out a fifth of the particulate matter. Walking thirty minutes a day is the most efficient form of mental and physical health care there is. These kinds of efficiencies build resilience. They don’t reduce it.

No speed demon
Efficiency is certainly not a be-all or end-all. Just as there is more to life than increasing its speed (thank you, Gandhi), there is more to life than optimizing its output. Growing vegetables in the backyard may be less efficient than buying from a commercial grower, and home and community solar panels may be less efficient than utility-scale PV located hundreds of miles away, but both will increase the resiliency of that household or community. Even better, they’ll make that household or community less passive and more in control of their own destiny. This beats efficiency hands down.

Waste from green can power orange and yellow
I will admit that some awful, awful things have been done in the name of efficiency, from urban renewal projects to concentration camps. This doesn’t mean efficiency was the root cause--often efficiency is a flashy banner flown to obscure true motives. Immoral and unethical actions should never be taken under the guise of efficiency; efficiency should always be a servant to human and planetary well-being rather than an altar on which to sacrifice either. But in a country where waste and profligacy have been enshrined as almost a birthright, a country that squanders a nearly unimaginable wealth of resources each and every day, a wise application of efficiency would go a long way towards making our communities more prosperous and resilient. Not to mention that if the US suddenly consumed energy at Swiss levels, the energy leftover from our current consumption could power the continents of Africa and South America. (One third of the population of the planet!) It's time to make efficiency our friend, a very dear one, not our foe.